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Exercise 18

Obtain the solutions for the velocity potential φ(x, z, t) and the free surface elevation η(x, t)
involved in the two-dimensional surface waves in water of finite (or infinite) depth h. The
governing equation, boundary, and free surface conditions and initial conditions (see Debnath
1994, p. 92) are

φxx + φzz = 0, −h ≤ z ≤ 0, −∞ < x <∞, t > 0,

φt + gη =
P

ρ
p(x) exp(iωt),

φz − ηt = 0

}
z = 0, t > 0,

φ(x, z, 0) = 0 = η(x, 0) for all x and z.

Solution

Depending whether the water has finite or infinite depth, the boundary condition will be different
for each case.

Boundary condition for finite depth h :
∂φ

∂z

∣∣∣∣
z=−h

= 0 (1)

Boundary condition for infinite depth : lim
z→−∞

∂φ

∂z
= 0 (2)

Water of Finite Depth h

The PDEs for φ and η are defined for −∞ < x <∞, so we can apply the Fourier transform to
solve them. We define the Fourier transform with respect to x here as

Fx{φ(x, z, t)} = Φ(k, z, t) =
1√
2π

ˆ ∞
−∞

e−ikxφ(x, z, t) dx,

which means the partial derivatives of φ with respect to x, z, and t transform as follows.

Fx

{
∂nφ

∂xn

}
= (ik)nΦ(k, z, t)

Fx

{
∂nφ

∂zn

}
=
dnΦ

dzn

Fx

{
∂nφ

∂tn

}
=
dnΦ

dtn

Take the Fourier transform of both sides of the first PDE.

Fx{φxx + φzz} = F{0}

The Fourier transform is a linear operator.

Fx{φxx}+ Fx{φzz} = 0

Transform the derivatives with the relations above.

(ik)2Φ +
d2Φ

dz2
= 0
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Expand the coefficient of Φ.

−k2Φ +
d2Φ

dz2
= 0

Bring the term with Φ to the right side.

d2Φ

dz2
= k2Φ

We can write the solution to this ODE in terms of exponentials.

Φ(k, z, t) = A(k, t)e|k|z +B(k, t)e−|k|z

We can use boundary condition (1) here to figure out one of the constants. First take the Fourier
transform of both sides of it.

Fx

{
∂φ

∂z

∣∣∣∣
z=−h

}
= Fx{0}

Transform the partial derivative.

dΦ

dz

∣∣∣∣
z=−h

= 0

Differentiating Φ with respect to z, we obtain

dΦ

dz
(k, z, t) = A(k, t)|k|e|k|z −B(k, t)|k|e−|k|z,

so the boundary condition gives

A(k, t)|k|e−|k|h −B(k, t)|k|e|k|h = 0 → A(k, t) = B(k, t)e2h|k|,

which means
Φ(k, z, t) = B(k, t)e−|k|z(1 + e2(h+z)|k|). (3)

Take the Fourier transform with respect to x of the boundary conditions at z = 0 now.

Fx{φt + gη} = Fx

{
−P
ρ
p(x)eiωt

}
Fx{φz − ηt} = Fx{0}

Use the linearity property.

Fx{φt}+ gFx{η} = −P
ρ
p̃(k)eiωt

Fx{φz} − Fx{ηt} = 0

Transform the partial derivatives.

dΦ

dt
+ gH = −P

ρ
p̃(k)eiωt (4)

dΦ

dz
− dH

dt
= 0
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Differentiate both sides of the first equation with respect to t and move dH/dt to the right side.

d2Φ

dt2
+ g

dH

dt
= −P

ρ
p̃(k)iωeiωt

dΦ

dz
=
dH

dt

Substitute the second equation into the first.

d2Φ

dt2
+ g

dΦ

dz
= −P

ρ
p̃(k)iωeiωt (5)

Evaluate the derivatives of Φ(k, z, t) in equation (3).

d2Φ

dt2
= Btte

−|k|z(1 + e2(h+z)|k|) → d2Φ

dt2

∣∣∣∣
z=0

= Btt(1 + e2h|k|)

dΦ

dz
= B|k|e−|k|z(−1 + e2(h+z)|k|) → dΦ

dz

∣∣∣∣
z=0

= B|k|(−1 + e2h|k|)

Plug these expressions for the derivatives into equation (5).

Btt(1 + e2h|k|) + gB|k|(−1 + e2h|k|) = −P
ρ
p̃(k)iωeiωt

Divide both sides by 1 + e2h|k|.

d2B

dt2
+ g|k|e

2h|k| − 1

e2h|k| + 1
B = − iωP p̃(k)

ρ(e2h|k| + 1)
eiωt

This is a second-order inhomogeneous ODE with constant coefficients. As such, the general
solution is obtained by adding the complementary and particular solutions.

B(k, t) = Bc +Bp

Bc is the solution to the associated homogeneous ODE,

d2Bc

dt2
+ g|k|e

2h|k| − 1

e2h|k| + 1
Bc = 0,

and Bp is the solution that satisfies the inhomogeneous ODE. The function of t on the right side
is eiωt, so Bp has the form Feiωt. F is a constant that we determine by plugging this form into
the ODE. In the end we get

B(k, t) = C1(k)e
t

√
g|k|−e2h|k|g|k|√

1+e2h|k| + C2(k)e
−t
√

g|k|−e2h|k|g|k|√
1+e2h|k| +

iωP p̃(k)

ρ[ω2 + g|k|+ e2h|k|(ω2 − g|k|)]
eiωt

for the solution. Resonance occurs if

ω2 = g|k|e
2h|k| − 1

e2h|k| + 1
= g|k| tanhh|k|
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in which case the solution is unbounded. The next order of business is to determine C1 and C2

using the initial conditions, φ(x, z, 0) = 0 and η(x, 0) = 0. Take the Fourier transform of both
sides of these conditions.

Fx{φ(x, z, 0)} = Fx{0} → Φ(k, z, 0) = 0

Fx{η(x, 0)} = Fx{0} → H(k, 0) = 0

Using the first one, we get

Φ(k, z, 0) = B(k, 0)e−|k|z(1 + e2(h+z)|k|) = 0,

which means

B(k, 0) = C1(k) + C2(k) +
iωP p̃(k)

ρ[ω2 + g|k|+ e2h|k|(ω2 − g|k|)]
= 0,

so

C1(k) = −C2(k)− iωP p̃(k)

ρ[ω2 + g|k|+ e2h|k|(ω2 − g|k|)]
.

Solve equation (4) for H now.

H(k, t) =
1

g

[
−P
ρ
p̃(k)eiωt − dΦ

dt

]∣∣∣∣
z=0

Using the second condition, H(k, 0) = 0, we find the second constant C2(k).

C2(k) = − iP p̃(k)

2ρ[ω(1 + e2h|k|)− i
√

1 + e2h|k|
√

1− e2h|k|
√
g|k|]

Putting all this together and simplifying, we therefore have

Φ(k, z, t) =
ie−z|k|

ρ
P p̃(k)[1 + e2(h+z)|k|]×[

ω
eiωt − eit

√
g|k| tanhh|k|

ω2 + g|k|+ e2h|k|(ω2 − g|k|)
+

i sin(t
√
g|k| tanhh|k|)

ω(1 + e2h|k|)− i
√

1 + e2h|k|
√

1− e2h|k|
√
g|k|

]

H(k, t) =

√
|k|
g

i
√

1 + e2h|k|
√

1− e2h|k|P p̃(k)

(1 + e2h|k|)ρω2 − (−1 + e2h|k|)gρ|k|
α(k, t) +

P |k|p̃(k)

ρω2 cothh|k| − gρ|k|
eiωt,

where

α(k, t) = ωeit
√

g|k| tanhh|k| −
[ω2 + g|k|+ e2h|k|(ω2 − g|k|)] cos(t

√
g|k| tanhh|k|)

ω(1 + e2h|k|)− i
√

1 + e2h|k|
√

1− e2h|k|
√
g|k|

p̃(k) =
1√
2π

ˆ ∞
−∞

p(x)e−ikx dx.

To get φ(x, z, t) and η(x, t), take the inverse Fourier transform of Φ and H, respectively.

φ(x, z, t) =
1√
2π

ˆ ∞
−∞

Φ(k, z, t)eikx dk and η(x, t) =
1√
2π

ˆ ∞
−∞

H(k, t)eikx dk
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Water of Infinite Depth

The PDEs for φ and η are defined for −∞ < x <∞, so we can apply the Fourier transform to
solve them. We define the Fourier transform with respect to x here as

Fx{φ(x, z, t)} = Φ(k, z, t) =
1√
2π

ˆ ∞
−∞

e−ikxφ(x, z, t) dx,

which means the partial derivatives of φ with respect to x, z, and t transform as follows.

Fx

{
∂nφ

∂xn

}
= (ik)nΦ(k, z, t)

Fx

{
∂nφ

∂zn

}
=
dnΦ

dzn

Fx

{
∂nφ

∂tn

}
=
dnΦ

dtn

Take the Fourier transform of both sides of the first PDE.

Fx{φxx + φzz} = F{0}

The Fourier transform is a linear operator.

Fx{φxx}+ Fx{φzz} = 0

Transform the derivatives with the relations above.

(ik)2Φ +
d2Φ

dz2
= 0

Expand the coefficient of Φ.

−k2Φ +
d2Φ

dz2
= 0

Bring the term with Φ to the right side.

d2Φ

dz2
= k2Φ

We can write the solution to this ODE in terms of exponentials.

Φ(k, z, t) = A(k, t)e|k|z +B(k, t)e−|k|z

We can use boundary condition (2) here to figure out one of the constants. Taking the Fourier
transform with respect to x of both sides of it gives us

Fx

{
lim

z→−∞

∂φ

∂z

}
= Fx{0}.

Bring the transform inside the limit.

lim
z→−∞

Fx

{
∂φ

∂z

}
= 0
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Transform the partial derivative.

lim
z→−∞

dΦ

dz
= 0

Differentiating Φ with respect to z, we obtain

dΦ

dz
(k, z, t) = A(k, t)|k|e|k|z −B(k, t)|k|e−|k|z.

In order for the boundary condition to be satisfied, we require that B(k, t) = 0.

Φ(k, z, t) = A(k, t)e|k|z (6)

Take the Fourier transform with respect to x of the boundary conditions at z = 0 now.

Fx{φt + gη} = Fx

{
−P
ρ
p(x)eiωt

}
Fx{φz − ηt} = Fx{0}

Use the linearity property.

Fx{φt}+ gFx{η} = −P
ρ
p̃(k)eiωt

Fx{φz} − Fx{ηt} = 0

Transform the partial derivatives.

dΦ

dt
+ gH = −P

ρ
p̃(k)eiωt (7)

dΦ

dz
− dH

dt
= 0

Differentiate both sides of the first equation with respect to t and move dH/dt to the right side.

d2Φ

dt2
+ g

dH

dt
= −P

ρ
p̃(k)iωeiωt

dΦ

dz
=
dH

dt

Substitute the second equation into the first.

d2Φ

dt2
+ g

dΦ

dz
= −P

ρ
p̃(k)iωeiωt (8)

Evaluate the derivatives of Φ(k, z, t) in equation (6).

d2Φ

dt2
= Atte

|k|z → d2Φ

dt2

∣∣∣∣
z=0

= Att

dΦ

dz
= A(k, t)|k|e|k|z → dΦ

dz

∣∣∣∣
z=0

= |k|A
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Plug these expressions for the derivatives into equation (8).

Att + g|k|A = −P
ρ
p̃(k)iωeiωt

The solution to this second-order inhomogeneous ODE is

A(k, t) = C1(k) cos(t
√
g|k|) + C2(k) sin(t

√
g|k|) +

iωP p̃(k)

ρ(ω2 − g|k|)
eiωt.

Resonance occurs if ω2 = g|k| in which case the solution is unbounded. To determine C1(k) and
C2(k), we make use of the initial conditions, φ(x, z, 0) = 0 = η(x, 0). Take the Fourier transform
of both sides of these conditions.

Fx{φ(x, z, 0)} = Fx{0} → Φ(k, z, 0) = 0

Fx{η(x, 0)} = Fx{0} → H(k, 0) = 0

Using the first condition, we get

Φ(k, z, 0) = A(k, 0)e|k|z = 0,

which implies that

C1(k) +
iωP p̃(k)

ρ(ω2 − g|k|)
= 0 → C1(k) = − iωP p̃(k)

ρ(ω2 − g|k|)
.

Solve equation (7) for H now.

H(k, t) =
1

g

[
−P
ρ
p̃(k)eiωt − dΦ

dt

]∣∣∣∣
z=0

Using the second condition, H(k, 0) = 0, we find the second constant C2(k).

C2(k) =

√
g|k|P p̃(k)

ρ(ω2 − g|k|)

Putting all this together and simplifying, we therefore have

Φ(k, z, t) =
P p̃(k)e|k|z

ρ(ω2 − g|k|)
[iω(eiωt − cos(t

√
g|k|) +

√
g|k| sin(t

√
g|k|)]

H(k, t) =
P p̃(k)

ρg(g|k| − ω2)
[−g|k|eiωt + g|k| cos(t

√
g|k|) + iω

√
g|k| sin(t

√
g|k|)]

where

p̃(k) =
1√
2π

ˆ ∞
−∞

p(x)e−ikx dx.

To get φ(x, z, t) and η(x, t), take the inverse Fourier transform of Φ and H, respectively.

φ(x, z, t) =
1√
2π

ˆ ∞
−∞

Φ(k, z, t)eikx dk and η(x, t) =
1√
2π

ˆ ∞
−∞

H(k, t)eikx dk
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