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Exercise 18

Obtain the solutions for the velocity potential ¢(z, z,t) and the free surface elevation n(z,t)
involved in the two-dimensional surface waves in water of finite (or infinite) depth h. The
governing equation, boundary, and free surface conditions and initial conditions (see Debnath
1994, p. 92) are

¢xr+¢zz:0, _h§2§07—00<.%‘<00,t>07
P
+ gn = ——pl(x) exp(iwt),
@1+ g1 =~ p(x) exp( )} 0t

¢z - = 0
¢(x,2,0) =0=mn(xz,0) forall z and z.

Solution

Depending whether the water has finite or infinite depth, the boundary condition will be different
for each case.

Boundary condition for finite depth A : 99 =0 (1)
Zly=—h
. e . 0¢

Boundary condition for infinite depth : Em o 0 (2)
z —0o0 zZ

Water of Finite Depth h

The PDEs for ¢ and n are defined for —oo < x < 0o, so we can apply the Fourier transform to
solve them. We define the Fourier transform with respect to x here as

Folo(m, 2 0)} = Bk, 2,1) = \/12? /_OO e~ gz 2 1) da,

which means the partial derivatives of ¢ with respect to x, z, and ¢ transform as follows.

. {8%} — (ik)"® (K, 2, 1)

ox™

g\ dd
f{a}—d

AN
fm{@t"}_dt”

Take the Fourier transform of both sides of the first PDE.

fm{¢m¢ + ¢zz} = ]:{0}

The Fourier transform is a linear operator.

Transform the derivatives with the relations above.

, d*®
(ik)*® + =0
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Expand the coefficient of ®.
—k2® + L 0
dz2

Bring the term with ® to the right side.

2
)
d—:k%

dz?

We can write the solution to this ODE in terms of exponentials.

®(k, z,t) = Ak, t)el*? + B(k, t)eIF
We can use boundary condition (1) here to figure out one of the constants. First take the Fourier

transform of both sides of it.

0¢ }
Fz { — = F.{0}
0z|,__y
Transform the partial derivative.
w o,
dz |,__,
Differentiating ® with respect to z, we obtain
)
‘ (k, 2,t) = A(k, t)[k|e/** — B(k, t)|k[e™ ¥,

dz
so the boundary condition gives

A(k’t)|k|€_‘k‘h - B(k‘, t)|k“e|k|h =0 — A(k‘,t) — B(k;’t)62h|k|7

which means
Ok, z,t) = B(k, t)e Fl2(1 + 2(nH2)IK],

Take the Fourier transform with respect to = of the boundary conditions at z = 0 now.

Fue{de + gn} = Fu {—];p(x)ew}

Use the linearity property.
P iwt
Faf e} + 9Faf{n} = —zp(k)e

Fuld:} — Fu{m} =0

Transform the partial derivatives.

dd ,
il H=—-"5% k? wwt
) p(k)e
ae _dH

dz dt
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Differentiate both sides of the first equation with respect to ¢ and move dH/dt to the right side.

d*®  dH P :
e = 5k wwt
praR pp( Jiwe
av _ it
dz  dt
Substitute the second equation into the first.
d>® dd P 4
- = 5(k)d wt 5

Evaluate the derivatives of ®(k, z,t) in equation (3).

dQQ) —|k|z 2(h+2)|k dz@ 2h|k

ﬁ:Btte ‘ ‘ (1+6 ( )l |) — W Z:O:Btt(1+€ | |)
dd dd

T —lklz(_ 2(h+z)|k| bl — _ 2h]k|

7 Blkle™""* (-1 + e ) — |, Blk|(—1 + ™)

Plug these expressions for the derivatives into equation (5).

P .
Bu(1 + N 4 gBlk|(—=1 + e®*)) = ——p(k)iwe™!
P

Divide both sides by 1 4 2"k,

7—|—g|kz|e B=-— et

This is a second-order inhomogeneous ODE with constant coefficients. As such, the general
solution is obtained by adding the complementary and particular solutions.

B(k,t) = B+ B,
B¢ is the solution to the associated homogeneous ODE,

d2BC e2h\k\_1
5 T 9kl
dt e2hlkl 41

B. =0,

and B, is the solution that satisfies the inhomogeneous ODE. The function of ¢ on the right side
is ™! so B, has the form Fe™!. F is a constant that we determine by plugging this form into
the ODE. In the end we get

1otk Flgiky t“ﬁ el iwPp(k)
B(k,t) = Ci(k)e e Oy (ke T et
) =) ) I+ glH] + (G — glH])

for the solution. Resonance occurs if

= g|k| tanh h|k|
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in which case the solution is unbounded. The next order of business is to determine C'; and Cs
using the initial conditions, ¢(x, z,0) = 0 and n(x,0) = 0. Take the Fourier transform of both
sides of these conditions.

Fulo(z, 2,00} = F {0}  —  ®(k,2,0)=0
Fo{n(z,0)} = Fo{0} — H(k,0)=0

Using the first one, we get

®(k, 2,0) = B(k,0)e F12(1 4 2(h+2)Ikly = 0,
which means
iwPp(k)

Bk, 0) = Calk) + Colk) + T+ e2hlbl (o2 — glD)]

=0,
SO
iwPp(k)

Ci(k) = —Ca(k) — P2 + glk| + 2kl (w2 — g[k])]

Solve equation (4) for H now.

H(k,t) = - |——p(k)e™! —

1[ P d®
gl »p dt

z=0

Using the second condition, H(k,0) = 0, we find the second constant Cs(k).
iPp(k)

2plw(1 + 2Pkl — iy/T + e2hlkl\/T — e2hlkl /gK]]

Putting all this together and simplifying, we therefore have

Ca(k) = —

ie_z‘kl

D(k, z,t) = Pp(k)[1 + e2(h =)kl

it — eity/glkltanh hlk| n isin(ty/g|k| tanh h|k|)
w
w? + glk| + e2hlkl (W2 — glk|) w(l + e2hlk) — i\/1 + e2hlk\/1 — e2hlkl | /g[k]

H(hy ) — |V VL SRR PEIDR)
’ g (1+ek)pw? — (=1 + e2h*)gplk| "7~ pw? coth hlk| — gplk|

where

ok, £) = weit/aIR nh Rk _ [w? + glk| + el (w? — gk|)] cos(t+/g[k] tanh h[K])
’ w(l + e2hlkly — i\/1 + e2hlkl\/1 — e2hIkl | /g]k|

) = <= [ plaje e

To get ¢(x, z,t) and n(x,t), take the inverse Fourier transform of ® and H, respectively.

o(x, z,t) = \/ﬂ/ d(k,z,t)e*® dk  and n(z,t) = \/ﬂ/ H(k,t)e*® dk
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Water of Infinite Depth

The PDEs for ¢ and n are defined for —co < z < 0o, so we can apply the Fourier transform to
solve them. We define the Fourier transform with respect to x here as

1 S
F. x,z,t)} = ®(k, 2, t :/ e (2, 2, t) dr,
o{0(x, 2, 1)} = (K, 2,1) N o(z, 2, t)
which means the partial derivatives of ¢ with respect to x, z, and ¢ transform as follows.

F {‘9"‘?)} = (ik)"®(k, 2, 1)

ox™

e A"
o {a} = 4o

oY do
o {atn} T odtm

Take the Fourier transform of both sides of the first PDE.

The Fourier transform is a linear operator.

Transform the derivatives with the relations above.

d?®
k) + — =0
(ik)"® + dz?
Expand the coefficient of ®.
—k2® + o 0
dz2
Bring the term with & to the right side.
d?®
— = k0
dz?

We can write the solution to this ODE in terms of exponentials.
Bk, z,t) = A(k, t)el** + B(k, t)e Ik

We can use boundary condition (2) here to figure out one of the constants. Taking the Fourier
transform with respect to x of both sides of it gives us

]—;{ lim (%}:]—}{0}.

z——00 0z

Bring the transform inside the limit.

2Z——00 0z

lim Fx{ad)} =0
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Transform the partial derivative.

Differentiating ® with respect to z, we obtain
dd
(k,z,t) = A(k, t)|k|e®* — B(k, t)|k|e *I=.

dz
In order for the boundary condition to be satisfied, we require that B(k,t) = 0.
(6)

®(k, z,t) = Ak, t)el*

Take the Fourier transform with respect to z of the boundary conditions at z = 0 now.

Fo{de + gn} = Fo {—ip(x)eth}

fx{QZ)Z - nt} = Fx{o}

Use the linearity property.
P iwt
Folik + gFoln} = = p(k)e

Fuld:} — Fu{m} =0

Transform the partial derivatives.
dd P <
— +gH = ——p(k)e™"
T pp( Je (7)
d® dH

dz dt
Differentiate both sides of the first equation with respect to ¢ and move dH/dt to the right side.

A2 dH P .
= ——p(k)iwe™"
p

@
av _dil
dz  dt
Substitute the second equation into the first.
d>® dd P ;
_ ME— 1 AT wt 8
o7 T pp( Jiwe (8)
Evaluate the derivatives of ®(k, z,t) in equation (6)
d?® d*®
2 Anelkl® i — A
dt? e - dt* |, !
) o
D Atk 1)kl N -
dz z=0

dz
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Plug these expressions for the derivatives into equation (8).
P _ - twt
Ay + glk|A = ——p(k)iwe
p

The solution to this second-order inhomogeneous ODE is

iwPp(k)
p(w? — glkl)
Resonance occurs if w? = g|k| in which case the solution is unbounded. To determine C(k) and

Csy(k), we make use of the initial conditions, ¢(z, z,0) = 0 = n(x,0). Take the Fourier transform
of both sides of these conditions.

wt

A(k,t) = Ci(k) cos(t\/glk|) + Ca(k) sin(t\/g|k|) +

Fulo(x,2,0)} = F,{0} — ®(k,2,0)=0
f:p{n(xao)} = }—x{o} —  H(k,0)=0

Using the first condition, we get
®(k, z,0) = A(k,0)el** = 0,

which implies that

iwPp(k) iwPp(k)
Cilk)+ ——-==0 — Cik)=—FF""~.
O = glhl) R3]
Solve equation (7) for H now.
1] P : d®
H(k,t)=— —ﬁke“"t—]
0= [~Tawe - 2|

Using the second condition, H(k,0) = 0, we find the second constant Cy(k).

Oy — YRPEE)

~ p(w? — glk[)

Putting all this together and simplifying, we therefore have

Pk |
Dk, z,t) = —5———[iw(e™" — cos(t\/g|k|) + v/ g|k|sin(t+/g|k
(k,z,1) p(wZ—g|k|)[ ( (t/glkl) || sin(t+/glk|)]
Pp(k) ot : .
H(k,t) = —————-[—glk|e"" + g|k| cos(t\/g|k|) + iwr/ g|k| sin(t+\/g|k
(k,1) pg(g|k|—w2)[ || || cos(t/glk|) || sin(t+/glk|)]

where

0= = [ s,

To get ¢(x, z,t) and n(x,t), take the inverse Fourier transform of ® and H, respectively.

ikx n T ikx
oz, 2,t) = \ﬁ/ O(k,z,t)e"™ dk and n(x,t) = \ﬁ/ H(k,t)e"™™ dk
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