Exercise 18

Obtain the solutions for the velocity potential $\phi(x, z, t)$ and the free surface elevation $\eta(x, t)$ involved in the two-dimensional surface waves in water of finite (or infinite) depth h. The governing equation, boundary, and free surface conditions and initial conditions (see Debnath 1994, p. 92) are

$$
\begin{aligned}
& \phi_{x x}+\phi_{z z}=0, \quad-h \leq z \leq 0, \quad-\infty<x<\infty, t>0, \\
& \phi_{t}+g \eta=-\frac{P}{\rho} p(x) \exp (i \omega t), \\
& \phi_{z}-\eta_{t}=0 \\
& \phi(x, z, 0)=0=\eta(x, 0) \quad \text { for all } x \text { and } z .
\end{aligned}
$$

Solution

Depending whether the water has finite or infinite depth, the boundary condition will be different for each case.

$$
\begin{equation*}
\text { Boundary condition for finite depth } h:\left.\quad \frac{\partial \phi}{\partial z}\right|_{z=-h}=0 \tag{1}
\end{equation*}
$$

Boundary condition for infinite depth: $\lim _{z \rightarrow-\infty} \frac{\partial \phi}{\partial z}=0$

Water of Finite Depth h

The PDEs for ϕ and η are defined for $-\infty<x<\infty$, so we can apply the Fourier transform to solve them. We define the Fourier transform with respect to x here as

$$
\mathcal{F}_{x}\{\phi(x, z, t)\}=\Phi(k, z, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \phi(x, z, t) d x
$$

which means the partial derivatives of ϕ with respect to x, z, and t transform as follows.

$$
\begin{aligned}
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial x^{n}}\right\}=(i k)^{n} \Phi(k, z, t) \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial z^{n}}\right\}=\frac{d^{n} \Phi}{d z^{n}} \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial t^{n}}\right\}=\frac{d^{n} \Phi}{d t^{n}}
\end{aligned}
$$

Take the Fourier transform of both sides of the first PDE.

$$
\mathcal{F}_{x}\left\{\phi_{x x}+\phi_{z z}\right\}=\mathcal{F}\{0\}
$$

The Fourier transform is a linear operator.

$$
\mathcal{F}_{x}\left\{\phi_{x x}\right\}+\mathcal{F}_{x}\left\{\phi_{z z}\right\}=0
$$

Transform the derivatives with the relations above.

$$
(i k)^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Expand the coefficient of Φ.

$$
-k^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Bring the term with Φ to the right side.

$$
\frac{d^{2} \Phi}{d z^{2}}=k^{2} \Phi
$$

We can write the solution to this ODE in terms of exponentials.

$$
\Phi(k, z, t)=A(k, t) e^{|k| z}+B(k, t) e^{-|k| z}
$$

We can use boundary condition (1) here to figure out one of the constants. First take the Fourier transform of both sides of it.

$$
\mathcal{F}_{x}\left\{\left.\frac{\partial \phi}{\partial z}\right|_{z=-h}\right\}=\mathcal{F}_{x}\{0\}
$$

Transform the partial derivative.

$$
\left.\frac{d \Phi}{d z}\right|_{z=-h}=0
$$

Differentiating Φ with respect to z, we obtain

$$
\frac{d \Phi}{d z}(k, z, t)=A(k, t)|k| e^{|k| z}-B(k, t)|k| e^{-|k| z},
$$

so the boundary condition gives

$$
A(k, t)|k| e^{-|k| h}-B(k, t)|k| e^{|k| h}=0 \quad \rightarrow \quad A(k, t)=B(k, t) e^{2 h|k|},
$$

which means

$$
\begin{equation*}
\Phi(k, z, t)=B(k, t) e^{-|k| z}\left(1+e^{2(h+z)|k|}\right) . \tag{3}
\end{equation*}
$$

Take the Fourier transform with respect to x of the boundary conditions at $z=0$ now.

$$
\begin{aligned}
& \mathcal{F}_{x}\left\{\phi_{t}+g \eta\right\}=\mathcal{F}_{x}\left\{-\frac{P}{\rho} p(x) e^{i \omega t}\right\} \\
& \mathcal{F}_{x}\left\{\phi_{z}-\eta_{t}\right\}=\mathcal{F}_{x}\{0\}
\end{aligned}
$$

Use the linearity property.

$$
\begin{aligned}
\mathcal{F}_{x}\left\{\phi_{t}\right\}+g \mathcal{F}_{x}\{\eta\} & =-\frac{P}{\rho} \tilde{p}(k) e^{i \omega t} \\
\mathcal{F}_{x}\left\{\phi_{z}\right\}-\mathcal{F}_{x}\left\{\eta_{t}\right\} & =0
\end{aligned}
$$

Transform the partial derivatives.

$$
\begin{align*}
\frac{d \Phi}{d t}+g H & =-\frac{P}{\rho} \tilde{p}(k) e^{i \omega t} \tag{4}\\
\frac{d \Phi}{d z}-\frac{d H}{d t} & =0
\end{align*}
$$

Differentiate both sides of the first equation with respect to t and move $d H / d t$ to the right side.

$$
\begin{aligned}
\frac{d^{2} \Phi}{d t^{2}}+g \frac{d H}{d t} & =-\frac{P}{\rho} \tilde{p}(k) i \omega e^{i \omega t} \\
\frac{d \Phi}{d z} & =\frac{d H}{d t}
\end{aligned}
$$

Substitute the second equation into the first.

$$
\begin{equation*}
\frac{d^{2} \Phi}{d t^{2}}+g \frac{d \Phi}{d z}=-\frac{P}{\rho} \tilde{p}(k) i \omega e^{i \omega t} \tag{5}
\end{equation*}
$$

Evaluate the derivatives of $\Phi(k, z, t)$ in equation (3).

$$
\begin{array}{lll}
\frac{d^{2} \Phi}{d t^{2}}=B_{t t} e^{-|k| z}\left(1+e^{2(h+z)|k|}\right) & \rightarrow & \left.\frac{d^{2} \Phi}{d t^{2}}\right|_{z=0}=B_{t t}\left(1+e^{2 h|k|}\right) \\
\frac{d \Phi}{d z}=B|k| e^{-|k| z}\left(-1+e^{2(h+z)|k|}\right) & \rightarrow & \left.\frac{d \Phi}{d z}\right|_{z=0}=B|k|\left(-1+e^{2 h|k|}\right)
\end{array}
$$

Plug these expressions for the derivatives into equation (5).

$$
B_{t t}\left(1+e^{2 h|k|}\right)+g B|k|\left(-1+e^{2 h|k|}\right)=-\frac{P}{\rho} \tilde{p}(k) i \omega e^{i \omega t}
$$

Divide both sides by $1+e^{2 h|k|}$.

$$
\frac{d^{2} B}{d t^{2}}+g|k| \frac{e^{2 h|k|}-1}{e^{2 h|k|}+1} B=-\frac{i \omega P \tilde{p}(k)}{\rho\left(e^{2 h|k|}+1\right)} e^{i \omega t}
$$

This is a second-order inhomogeneous ODE with constant coefficients. As such, the general solution is obtained by adding the complementary and particular solutions.

$$
B(k, t)=B_{c}+B_{p}
$$

B_{c} is the solution to the associated homogeneous ODE,

$$
\frac{d^{2} B_{c}}{d t^{2}}+g|k| \frac{e^{2 h|k|}-1}{e^{2 h|k|}+1} B_{c}=0,
$$

and B_{p} is the solution that satisfies the inhomogeneous ODE. The function of t on the right side is $e^{i \omega t}$, so B_{p} has the form $F e^{i \omega t} . F$ is a constant that we determine by plugging this form into the ODE. In the end we get

$$
B(k, t)=C_{1}(k) e^{t \frac{\sqrt{g|k|-e^{2 h|k|}| | k \mid}}{\sqrt{1+e^{2 h|k|}}}}+C_{2}(k) e^{-t \frac{\sqrt{g|k|-e^{2 h|k|}|g| k \mid}}{\sqrt{1+e^{2 h|k|}}}}+\frac{i \omega P \tilde{p}(k)}{\rho\left[\omega^{2}+g|k|+e^{2 h|k|}\left(\omega^{2}-g|k|\right)\right]} e^{i \omega t}
$$

for the solution. Resonance occurs if

$$
\omega^{2}=g|k| \frac{e^{2 h|k|}-1}{e^{2 h|k|}+1}=g|k| \tanh h|k|
$$

in which case the solution is unbounded. The next order of business is to determine C_{1} and C_{2} using the initial conditions, $\phi(x, z, 0)=0$ and $\eta(x, 0)=0$. Take the Fourier transform of both sides of these conditions.

$$
\begin{aligned}
\mathcal{F}_{x}\{\phi(x, z, 0)\} & =\mathcal{F}_{x}\{0\} \quad
\end{aligned} \quad \rightarrow \quad \Phi(k, z, 0)=0 ~=~ \mathcal{F}_{x}\{\eta(x, 0)\}=\mathcal{F}_{x}\{0\} \quad \rightarrow \quad H(k, 0)=0
$$

Using the first one, we get

$$
\Phi(k, z, 0)=B(k, 0) e^{-|k| z}\left(1+e^{2(h+z)|k|}\right)=0,
$$

which means

$$
B(k, 0)=C_{1}(k)+C_{2}(k)+\frac{i \omega P \tilde{p}(k)}{\rho\left[\omega^{2}+g|k|+e^{2 h|k|}\left(\omega^{2}-g|k|\right)\right]}=0,
$$

so

$$
C_{1}(k)=-C_{2}(k)-\frac{i \omega P \tilde{p}(k)}{\rho\left[\omega^{2}+g|k|+e^{2 h|k|}\left(\omega^{2}-g|k|\right)\right]} .
$$

Solve equation (4) for H now.

$$
H(k, t)=\left.\frac{1}{g}\left[-\frac{P}{\rho} \tilde{p}(k) e^{i \omega t}-\frac{d \Phi}{d t}\right]\right|_{z=0}
$$

Using the second condition, $H(k, 0)=0$, we find the second constant $C_{2}(k)$.

$$
C_{2}(k)=-\frac{i P \tilde{p}(k)}{2 \rho\left[\omega\left(1+e^{2 h|k|}\right)-i \sqrt{1+e^{2 h|k|}} \sqrt{1-e^{2 h|k|}} \sqrt{g|k|}\right.}
$$

Putting all this together and simplifying, we therefore have

$$
\begin{aligned}
\Phi(k, z, t)= & \frac{i e^{-z|k|}}{\rho} P \tilde{p}(k)\left[1+e^{2(h+z)|k|}\right] \times \\
& {\left[\omega \frac{e^{i \omega t}-e^{i t \sqrt{g|k| \tanh h|k|}}}{\omega^{2}+g|k|+e^{2 h|k|}\left(\omega^{2}-g|k|\right)}+\frac{i \sin (t \sqrt{g|k| \tanh h|k|})}{\omega\left(1+e^{2 h|k|}\right)-i \sqrt{1+e^{2 h|k|}} \sqrt{1-e^{2 h|k|}} \sqrt{g|k|}}\right] } \\
H(k, t)= & \sqrt{\frac{|k|}{g}} \frac{i \sqrt{1+e^{2 h|k|}} \sqrt{1-e^{2 h|k|}} P \tilde{p}(k)}{\left(1+e^{2 h|k|}\right) \rho \omega^{2}-\left(-1+e^{2 h|k|}\right) g \rho|k|} \alpha(k, t)+\frac{P|k| \tilde{p}(k)}{\rho \omega^{2} \operatorname{coth} h|k|-g \rho|k|} e^{i \omega t},
\end{aligned}
$$

where

$$
\begin{aligned}
\alpha(k, t) & =\omega e^{i t \sqrt{g|k| \tanh h|k|}}-\frac{\left[\omega^{2}+g|k|+e^{2 h|k|}\left(\omega^{2}-g|k|\right)\right] \cos (t \sqrt{g|k| \tanh h|k|})}{\omega\left(1+e^{2 h|k|}\right)-i \sqrt{1+e^{2 h|k|}} \sqrt{1-e^{2 h|k|}} \sqrt{g|k|}} \\
\tilde{p}(k) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} p(x) e^{-i k x} d x .
\end{aligned}
$$

To get $\phi(x, z, t)$ and $\eta(x, t)$, take the inverse Fourier transform of Φ and H, respectively.

$$
\phi(x, z, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Phi(k, z, t) e^{i k x} d k \quad \text { and } \quad \eta(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} H(k, t) e^{i k x} d k
$$

Water of Infinite Depth

The PDEs for ϕ and η are defined for $-\infty<x<\infty$, so we can apply the Fourier transform to solve them. We define the Fourier transform with respect to x here as

$$
\mathcal{F}_{x}\{\phi(x, z, t)\}=\Phi(k, z, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \phi(x, z, t) d x
$$

which means the partial derivatives of ϕ with respect to x, z, and t transform as follows.

$$
\begin{aligned}
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial x^{n}}\right\}=(i k)^{n} \Phi(k, z, t) \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial z^{n}}\right\}=\frac{d^{n} \Phi}{d z^{n}} \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial t^{n}}\right\}=\frac{d^{n} \Phi}{d t^{n}}
\end{aligned}
$$

Take the Fourier transform of both sides of the first PDE.

$$
\mathcal{F}_{x}\left\{\phi_{x x}+\phi_{z z}\right\}=\mathcal{F}\{0\}
$$

The Fourier transform is a linear operator.

$$
\mathcal{F}_{x}\left\{\phi_{x x}\right\}+\mathcal{F}_{x}\left\{\phi_{z z}\right\}=0
$$

Transform the derivatives with the relations above.

$$
(i k)^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Expand the coefficient of Φ.

$$
-k^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Bring the term with Φ to the right side.

$$
\frac{d^{2} \Phi}{d z^{2}}=k^{2} \Phi
$$

We can write the solution to this ODE in terms of exponentials.

$$
\Phi(k, z, t)=A(k, t) e^{|k| z}+B(k, t) e^{-|k| z}
$$

We can use boundary condition (2) here to figure out one of the constants. Taking the Fourier transform with respect to x of both sides of it gives us

$$
\mathcal{F}_{x}\left\{\lim _{z \rightarrow-\infty} \frac{\partial \phi}{\partial z}\right\}=\mathcal{F}_{x}\{0\} .
$$

Bring the transform inside the limit.

$$
\lim _{z \rightarrow-\infty} \mathcal{F}_{x}\left\{\frac{\partial \phi}{\partial z}\right\}=0
$$

Transform the partial derivative.

$$
\lim _{z \rightarrow-\infty} \frac{d \Phi}{d z}=0
$$

Differentiating Φ with respect to z, we obtain

$$
\frac{d \Phi}{d z}(k, z, t)=A(k, t)|k| e^{|k| z}-B(k, t)|k| e^{-|k| z} .
$$

In order for the boundary condition to be satisfied, we require that $B(k, t)=0$.

$$
\begin{equation*}
\Phi(k, z, t)=A(k, t) e^{|k| z} \tag{6}
\end{equation*}
$$

Take the Fourier transform with respect to x of the boundary conditions at $z=0$ now.

$$
\begin{aligned}
& \mathcal{F}_{x}\left\{\phi_{t}+g \eta\right\}=\mathcal{F}_{x}\left\{-\frac{P}{\rho} p(x) e^{i \omega t}\right\} \\
& \mathcal{F}_{x}\left\{\phi_{z}-\eta_{t}\right\}=\mathcal{F}_{x}\{0\}
\end{aligned}
$$

Use the linearity property.

$$
\begin{aligned}
\mathcal{F}_{x}\left\{\phi_{t}\right\}+g \mathcal{F}_{x}\{\eta\} & =-\frac{P}{\rho} \tilde{p}(k) e^{i \omega t} \\
\mathcal{F}_{x}\left\{\phi_{z}\right\}-\mathcal{F}_{x}\left\{\eta_{t}\right\} & =0
\end{aligned}
$$

Transform the partial derivatives.

$$
\begin{align*}
\frac{d \Phi}{d t}+g H & =-\frac{P}{\rho} \tilde{p}(k) e^{i \omega t} \tag{7}\\
\frac{d \Phi}{d z}-\frac{d H}{d t} & =0
\end{align*}
$$

Differentiate both sides of the first equation with respect to t and move $d H / d t$ to the right side.

$$
\begin{aligned}
\frac{d^{2} \Phi}{d t^{2}}+g \frac{d H}{d t} & =-\frac{P}{\rho} \tilde{p}(k) i \omega e^{i \omega t} \\
\frac{d \Phi}{d z} & =\frac{d H}{d t}
\end{aligned}
$$

Substitute the second equation into the first.

$$
\begin{equation*}
\frac{d^{2} \Phi}{d t^{2}}+g \frac{d \Phi}{d z}=-\frac{P}{\rho} \tilde{p}(k) i \omega e^{i \omega t} \tag{8}
\end{equation*}
$$

Evaluate the derivatives of $\Phi(k, z, t)$ in equation (6).

$$
\begin{array}{lll}
\frac{d^{2} \Phi}{d t^{2}}=A_{t t} e^{|k| z} & \rightarrow & \left.\frac{d^{2} \Phi}{d t^{2}}\right|_{z=0}=A_{t t} \\
\frac{d \Phi}{d z}=A(k, t)|k| e^{|k| z} & \rightarrow & \left.\frac{d \Phi}{d z}\right|_{z=0}=|k| A
\end{array}
$$

Plug these expressions for the derivatives into equation (8).

$$
A_{t t}+g|k| A=-\frac{P}{\rho} \tilde{p}(k) i \omega e^{i \omega t}
$$

The solution to this second-order inhomogeneous ODE is

$$
A(k, t)=C_{1}(k) \cos (t \sqrt{g|k|})+C_{2}(k) \sin (t \sqrt{g|k|})+\frac{i \omega P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)} e^{i \omega t} .
$$

Resonance occurs if $\omega^{2}=g|k|$ in which case the solution is unbounded. To determine $C_{1}(k)$ and $C_{2}(k)$, we make use of the initial conditions, $\phi(x, z, 0)=0=\eta(x, 0)$. Take the Fourier transform of both sides of these conditions.

$$
\begin{aligned}
\mathcal{F}_{x}\{\phi(x, z, 0)\} & =\mathcal{F}_{x}\{0\} \quad
\end{aligned} \quad \rightarrow \quad \Phi(k, z, 0)=0 ~=~ \mathcal{F}_{x}\{\eta(x, 0)\}=\mathcal{F}_{x}\{0\} \quad \rightarrow \quad H(k, 0)=0
$$

Using the first condition, we get

$$
\Phi(k, z, 0)=A(k, 0) e^{|k| z}=0
$$

which implies that

$$
C_{1}(k)+\frac{i \omega P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)}=0 \quad \rightarrow \quad C_{1}(k)=-\frac{i \omega P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)} .
$$

Solve equation (7) for H now.

$$
H(k, t)=\left.\frac{1}{g}\left[-\frac{P}{\rho} \tilde{p}(k) e^{i \omega t}-\frac{d \Phi}{d t}\right]\right|_{z=0}
$$

Using the second condition, $H(k, 0)=0$, we find the second constant $C_{2}(k)$.

$$
C_{2}(k)=\frac{\sqrt{g|k|} P \tilde{p}(k)}{\rho\left(\omega^{2}-g|k|\right)}
$$

Putting all this together and simplifying, we therefore have

$$
\begin{aligned}
\Phi(k, z, t) & =\frac{P \tilde{p}(k) e^{|k| z}}{\rho\left(\omega^{2}-g|k|\right)}\left[i \omega\left(e^{i \omega t}-\cos (t \sqrt{g|k|})+\sqrt{g|k|} \sin (t \sqrt{g|k|})\right]\right. \\
H(k, t) & =\frac{P \tilde{p}(k)}{\rho g\left(g|k|-\omega^{2}\right)}\left[-g|k| e^{i \omega t}+g|k| \cos (t \sqrt{g|k|})+i \omega \sqrt{g|k|} \sin (t \sqrt{g|k|})\right]
\end{aligned}
$$

where

$$
\tilde{p}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} p(x) e^{-i k x} d x .
$$

To get $\phi(x, z, t)$ and $\eta(x, t)$, take the inverse Fourier transform of Φ and H, respectively.

$$
\phi(x, z, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Phi(k, z, t) e^{i k x} d k \quad \text { and } \quad \eta(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} H(k, t) e^{i k x} d k
$$

